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Abstract 
 
In this paper, a receding horizon (RH) controller is developed for tracking control of wheeled mobile robots (WMRs) 

subject to nonholonomic constraint in the environments without obstacles. The problem is simplified by neglecting the 
vehicle dynamics and considering only the steering system. First, the tracking-error kinematic model is linearized at the 
equilibrium point. And then, it is transferred to an exact discrete form considering the time-delay. The control policy is 
derived from the optimization of a quadratic cost function, which penalizes the tracking error and control variables in 
each sampling time. The minimizing problem is solved by using the QP (quadratic programming) method taking the 
current error state as the initial value and including the velocity constraints. The performance of the control algorithm is 
verified via the computer simulations with several different predefined trajectories showing that the strategy is feasible.  
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1. Introduction 

In recent years, there has been an increasing 
amount of research on the subject of mobile robots, 
which are widely used in many areas. As the most 
popular kind, the differentially steered wheeled mo-
bile robots (WMRs) have high mobility, high traction 
with pneumatic tires, and a simple wheel configura-
tion. There are several kinds of controllers proposed 
for mobile robots with nonholonomic constraints, for 
which two main approaches to control mobile robots 
are point stabilization and trajectory tracking.  

The aim of point stabilization can be regarded as 
the generation of control inputs to drive the robot 
from an initial point to a target point, such as in [1, 2, 
3]. Differently, trajectory tracking is to have the robot 
moving follow a reference trajectory, which is easier 
to achieve than point stabilization and more natural 

for a mobile robot. Usually, the reference trajectory 
can be obtained by a reference robot, and all the ki-
nematic constraints are implicitly considered by the 
reference trajectory. Some early research by Song and 
Li [4] developed an LQR controller based on a lin-
earized state-space model. In their presentation, the 
tracking errors can be eliminated and the mobile robot 
can follow the specified trajectories. In the linear 
model approach, however, the controller works only 
when the linear velocity is not zero. Under such cir-
cumstances, it would be difficult to control the mobile 
robot to track the specified trajectory and in the mean-
time stop with the specified pose. Consequently, a 
more generalized approach is desirable. Nonlinear 
system theory has been employed to solve this prob-
lem, such as [5, 6]. Two main research directions 
employing nonlinear control design can be distin-
guished. The first uses discontinuous feedback, 
whereas the second research direction uses time-
varying continuous feedback. However, though these 
solve the regulation problem, they yield slow asymp-
totic convergence. To obtain faster convergence (e.g., 
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exponential convergence), an alternative approach 
was initially proposed by M’Closkey and Murray [7], 
and research on the tracking problem for mobile ro-
bots has been extensive. With the input saturations, 
global solutions to the stabilization and tracking prob-
lem for the kinematic model were derived and a time-
varying state-feedback controller was obtained in [8, 
9]. Input-output linearization is used in [10] for 
nonlinear systems having more outputs than inputs, 
by using a generalized inverse concept. [11] presented 
an output-feedback controller that forced the output 
(position and orientation) of a unicycle-type mobile 
robot to track a predefined path. A coordinate trans-
formation was first derived to cancel the velocity 
quadratic terms. An observer was then designed to 
globally exponentially/asymptotically estimate the 
unmearsured velocities. And more research can be 
seen in [12-14]. 

Receding horizon control, also called model predic-
tive control, is a technology in widespread use in 
industry for control design of highly complex multi-
variable processes [15-19]. Such an RHC method 
represents a way of transforming an open-loop design 
methodology (i.e., optimal control) into a feedback 
one, as at every time step the input applied to the 
process depends on the most recent measurements. In 
the field of mobile robotics predictive approaches to 
path tracking also seem to be very promising because 
the reference trajectory is known beforehand [20]. 
showed how to improve the robustness of mobile 
robot path tracking when predictive control algo-
rithms were used, and [21] presented a new path-
tracking scheme for a car-like mobile robot based on 
neural predictive control. 

This paper deals with differentially steered wheeled 
mobile robots and RH trajectory-tracking control with 
time-delay on a reference trajectory. The problem is 
simplified by neglecting the vehicle dynamics and 
considered only the steering system. To compute the 
vehicle control inputs, it is assumed that there is “per-
fect velocity tracking” [22]. The control law is based 
on an error kinematic model, which is linearized at 
the equilibrium point. This model has stabilization by 
using linear feedback for the case that direct and an-
gle velocities are persistent. RHC is a one-step-ahead 
predictive controller obtained by minimizing the dif-
ference between the future trajectory-following errors 
of the robot and the reference point. In time-free sys-
tems, the control law can be obtained by minimizing 
the quadratic cost function consisting of tracking er-

rors and control effort. The QP (quadratic program-
ming) method is used to solve such optimal problem 
with the constraints. But in time-delay systems, first, 
the exact discrete-time error-tracking model is ob-
tained by a short sampling time. Then, the QP method 
is applied to solve the tracking problem with delay. 
Due to the more complex control structure and taking 
into account future tracking-errors of the robot, the 
RHC gives good tracking results. However, compared 
to other related control algorithms, the main advan-
tage of the approach is the lower computation burden.  

A preliminary study on the control of wheeled mo-
bile robot is presented in this paper. It is organized 
into six sections to accurately present our approach. 
The dynamics and kinematics of the mobile robot are 
introduced in Section 2. Section 3 discusses the con-
struction of the error-tracking control. The receding 
horizon control is first introduced in the Section 4. 
The RH controller is designed for the error-tracking 
model with time-delay and the problem is solved by 
the QP method. The computer simulation results of 
different trajectories are shown in Section 5. Finally, 
the conclusions of our study are drawn.  

 
2. Dynamics and kinematics of the wheeled 

mobile robot 

A mobile robot system with n  generalized coor-
dinates 1( ,..., )nq q  and subject to m  constraints can 
be described by [23, 24]. 

 
( ) ( , ) ( ) ( ) ( ) ( )T

mM q q V q q q F q G q B q A qτ λ+ + + = −�� � � �   
 (1) 

 
where ( ) n nM q ×∈\ is a symmetric, positive definite 
inertia matrix, ( , ) n n

mV q q ×∈� \ is the centripetal and 
coriolis matrix, 1( ) nF q ×∈� \ denotes the surface fric-
tion, 1( ) nG q ×∈\ is the gravitational vector. 

( ) n rB q ×∈\  is the input transformation matrix, 
1rτ ×∈\ is the input vector, ( ) m nA q ×∈\ is the matrix 

associated with the constraints, and 1mλ ×∈\ is the 
vector of constraint forces.  

All kinematic equality constraints are independent 
of time and can be expressed as follows: 

 
( ) 0A q q =�                           (2) 

 
Let ( )S q  be a full rank matrix ( )n m−  formed 

by a set of smooth (i.e., continuously differentiable)  
and linearly independent vector fields in the null 
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space of ( )A q : 
 

( ) ( ) 0T TS q A q =                         (3) 
 
According to (2) and (3), it is possible to find an 

auxiliary vector time function ( ) n mu t −∈\  such that, 
for all t  

 
( ) ( )q S q u t=�                          (4) 

 
The mobile robot shown in Fig. 1 is a typical ex-

ample of a nonholonomic mechanical system. It con-
sists of a vehicle with two driving wheels mounted on 
the same axis and two castors. The motion and orien-
tation are achieved by independent actuators, e.g., dc 
motors providing the necessary torques to the rear 
wheels.  

The position and orientation of the robot in an inte-
rial Cartesian frame { , , }O X Y  are completely speci-
fied by [ ]Tq x y θ= , which are the coordinates of 

cP . cP  is the center of the axis of the driving wheels 
and we also assume it as the mass center of the robot 
in our paper.  

The nonholonomic constraint states that the robot 
can only move in the direction normal to the axis of 
the driving wheels, i.e., the robot satisfies the condi-
tion of nonslipping in a lateral direction: 

 
sin cos 0x yθ θ− =� �                     (5) 

 
It is easy to verify that ( )S q  is given by  
 

cos 0
( ) sin 0

0 1
S q

θ
θ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

                    (6) 

 

 
 
Fig. 1. A nonholonomic wheeled mobile robot. 

The kinematic equations of motion (4) in terms of 
its linear speed υ  and angular speed ω  are 

 
cos 0
sin   0 ,    

0 1

x
q y u u

θ
υ

θ
ω

θ

⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥= = = ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

�
� �

�
         (7) 

 
which is called the steering system of the vehicle. 

The dynamic equations of the mobile robot base in 
Fig. 1 can be expressed as follows: 

 
0 0

( ) 0 0 , ( , ) 0, ( ) 0,
0 0

m

m
M q m V q q G q

I

⎡ ⎤
⎢ ⎥= = =⎢ ⎥
⎢ ⎥⎣ ⎦

�  

cos cos sin
1( ) sin sin , , ( ) cos

0
2 2

r T

l
B q A q

r
L L

θ θ θ
τ

θ θ τ θ
τ

⎡ ⎤
⎢ ⎥ −⎡ ⎤
⎢ ⎥ ⎡ ⎤ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥−
⎣ ⎦

 

( cos sin )m x yλ θ θ θ= − + �� �               (8) 

 
where m  is the mass of the robot, I is the moment 
of inertia of the robot about a vertical axis through cP , 

rτ  and lτ  are the torques acting on the wheel gen-
erated by the right and left motors. 

The system (1) is now transformed into a more ap-
propriate representation for controls purposes. Differ-
entiating (4), substituting this result in (1), and then 
multiplying by TS , we can eliminate the constraint 
matrix ( )TA q λ . The complete equations of motion 
of the nonholonomic mobile platform are given by 

 
q Su=�                            (9) 
( ) ( )T T TS MS u S MS u F S Bτ+ + =��       (10) 
 
It is desirable to select a velocity control ( )u t  for 

the tracking task only in the steering system (9) by 
ignoring the dynamics (10) temporarily.  

 
3. Definition of error-tracking control  

3.1 Error-tracking model 

The reference trajectories should also be described 
by a reference state vector ( , , )T

r r r rq x y θ=  and a 
reference control signal vectors ( , )T

r r ru υ ω= , which 
have the same kinematic Eq. (7): 
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Fig. 2. Robot following error transformation. 

 
cos cos 0
sin sin   0

0 1

r r r r

r r r r r r

r r

x
q y u

υ θ θ
υ θ θ

θ ω

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

�
� �

�
       (11)  

 
To control (7) and to track (11), an error state can 

be expressed in the frame of the robot (see [22]), as 
shown in Fig. 2: 
 

1

2

3

cos sin 0
sin cos 0 ( )
0 0 1

e

e r

e

e x
e e y q q

e

θ θ
θ θ

θ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

  (12) 

 
Therefore, the tracking error model is obtained (see 

the Appendix. A): 
 

cos
sin

e e r e

e e r e

e r

x y
y x

ω υ υ θ
ω υ θ

θ ω ω

= − +
= − +

= −

�
�
�

                (13) 

 
3.2 Control construction  

Refining the control signals 
 

1

2

cosr e
e

r

u
u

u
υ υ θ

ω ω
−⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
            (14) 

 
Rewriting the Eq. (13) results in the following 

tracking-error model: 
 

3

0 0 0 1 0
0 0 sin 0 0

0 0 0 0 0 1
r ee e e u

ω
ω υ

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

�    (15) 

In the Eq. (7), we know that the input of the kine-
matic equation is ( , )Tu υ ω= . Now, the input vector 
u  can be defined again, as the sum of the feedfor-
ward and feedback control signals, as follows: 

 
forward backu u u= +                   (16) 

 
where the feedforward input vector  
 

3cosr
forward

r

e
u

υ
ω

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

                 (17) 

 
is obtained by a nonlinear transformation of the ve-
locities of the reference point. And the feedback input 
(i.e., the error control signal)  
 

1

2

e
back e

e

u
u u

u
⎡ ⎤

= = ⎢ ⎥
⎣ ⎦

                  (18) 

 
which is used in Eq. (15).  

The feedforward control law is derived from a 
given reference trajectory ( ( ), ( )r rx t y t ) defined in a 
time interval [0, ]t t∈ . However, the calculated robot 
inputs drive the robot on a desired path only if there 
are no disturbances and no initial state errors. The 
nominal tangential ( )r tυ  is calculated as follows: 

 
2 2( ) ( ) ( )r r rt x t y tυ = ± +� �                  (19) 

 
where the sign depends on the desired drive direction 
(i.e., + for forward and − for reverse). The tangent 
angle of each point on the path is defined as 
 

( )( ) ATAN2 ( ), ( ) ,  0,1r r rt y t x t k kθ π= + =� �     (20) 
 

where ATAN2  is the four-quadratic inverse tangent 
function (undefined only if both arguments are zero). 
By calculating the time derivative of Eq. (20), the 
nominal angular velocity ( )r tω  is obtained: 
 

2 2
( ) ( ) ( ) ( )( )

( ) ( )
r r r r

r
r r

x t y t y t x tt
x t y t

ω −=
+

� �� � ��
� �

           (21) 

 
By using relations Eq. (19), Eq. (21) and the de-

fined reference robot path ( , , )T
r r r rq x y θ= , the 

nominal inputs ( )r tυ  and ( )r tω  of the reference 
point are calculated. In order to be exactly reproduci-
ble using ( )r tυ  and ( )r tω , the desired Cartesian 
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motion ( ( ), ( )r rx t y t ) should be twice differentiable.  
The feedback input is derived in Eq. (16) and Eq. 

(18). Subsequently, by linearizing the error model 
(15) at the equilibrium point 1 2 3( 0,e e e= = =  

1 2 0)e eu u= = , the following linear model is obtained 
(see the Appendix. B): 

 
0 0 1 0

0 0   0
0 0 0 0 1

r

r r ee e u
ω

ω υ
−⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥= − +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

�           (22) 

 
Eq. (22) is in the state-space form, c c ee A e B u= +� . 

The controllability matrix 2[     ]c c c c cB A B A B  has full 
rank if rυ  or rω  is nonzero, which is a sufficient 
condition for controllability only when the reference 
inputs rυ  and rω  are constant (linear and circular 
paths). Since the error state model (22) is controllable, 
a local asymptotic stable controller can be found (see 
[22]), by using the “persistent excitation” of ( )r tω  
and ( )r tυ  ( 2 2lim ( ) ( ) 0t r rt tω υ→∞ + ≠ ). Now we have 
obtained the differential equation form.        

 
4. Receding horizon tracking controller 

Receding horizon control (RHC) is a widely used 
technology in industry for control design of highly 
complex multivariable processes. The idea behind 
RHC is to start with a model of the open-loop process 
that explains the relations among the system variables 
(command inputs, internal states, and measured out-
puts). Then, constraint specifications on system vari-
ables are added, such as input limitations and desired 
ranges where states and outputs should remain. De-
sired performance specifications complete the control 
problem setup and are expressed through different 
weights on tracking errors and actuator efforts. The 
rest of the RHC design is automatic. First, an optimal 
control problem based on the given model, constraints, 
and weights, is constructed and translated into an 
equivalent optimization problem, which depends on 
the initial state and reference signals. Then, at each 
sampling time, the optimization problem is solved by 
taking the current (measured or estimated) state as the 
initial state of the optimal control problem. For this 
reason the approach is said to be predictive, as in fact 
the optimal control problem is formulated over a 
time-interval that starts at the current time up to a 
certain interval in the future. The result of the optimi-
zation is an optimal sequence of future control moves. 
Only the first sample of such a sequence is actually 

applied to the process; the remaining moves are dis-
carded. At the next time step, a new optimal control 
problem based on the new feedback state is solved 
over a shifted prediction horizon. For this reason the 
approach is also called “receding horizon” control.  

 
4.1 Problem formulation 

The idea of the receding horizon control concept is 
to find the control variable values that minimize the 
quadratic cost function based on the predicted robot-
following error: 

 

1

( ) ( ) ( ) ( 1) ( 1)
h

T T
e e e

j

V u k j Q k j u k j Ru k jε ε ε
=

⎡ ⎤, + + + + − + −⎣ ⎦∑�              

 (23) 
 

where ( ) ( ) ( )rk j e k j e k jε + = + − + . ( )re k j+  and 
( )e k j+  stand for the reference robot-tracking-error 

and real robot-tracking-error, respectively; h  is the 
prediction horizon and Q , R  are weighting matri-
ces for error state and control variables where 

n nQ∈ ×\ \  and m mR∈ ×\ \ . 
 

4.2 Exact discrete-time error-tracking model with 
time-delay 

Considering the time-delay, the linear error-
tracking model (22) becomes 

 
( )c c ee A e B u t D= + −�                (24) 

 
Set the sampling time interval sT  and assume that 

delay time ( 1) sD d T γ= − + . We can verify that the 
delayed input variable attains the following two dis-
tinct values within the sampling interval (shown in 
Fig. 3): 

 
   

     ( ) ( )
  ( 1)

     ( ) ( 1)

s s

s s

if kT t kT
u t D u k d

if kT t k T
u t D u k d

γ

γ

≤ < +
− = −
+ ≤ < +
− = − +

             (25) 

 
 

skT skT γ+ s skT T+

( )u k d− ( 1)u k d− +

 
 
Fig. 3. Scheme of input with time-delay. 
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So the error-tracking model can be written in the 
exact discrete-time form as  

 
( 1) ( ) ( ) ( 1)e ee k e k u k d u k d+ = Φ + Γ − + Γ − +   (26) 

 
where  
 

c sA TeΦ =                           (27) 

0

cAe d
γ

τ τΓ = ∫                       (28) 

0

s

c

T
Ae d

γ
τ τ

−

Γ = ∫                      (29) 

 
4.3 Prediction in the discrete-time framework with 

time-delay 

In the moving time frame, the predictive error state 
within the horizon prediction h  can be written as: 

 

1 1

0 1

( 1) ( ) ( ) ( ) ( ) ( ) ( 1),
( 2) ( 1) ( ) ( ) ( 1) ( ) ( )

               [ ( 1) ( ) ( 1)] ( 1)
               ( 1) ( 2),

( ) ( ) ( ) ( ) ( )

e e

e

e

e

h h

j j

e k k e k k u k d k u k d
e k k k e k k k u k d

k k k u k d
k u k d

e k h k j e k k j k
− −

= =

+ = Φ + Γ − + Γ − +
+ = Φ + Φ +Φ + Γ −

+ Φ + Γ + Γ + − +

+ Γ + − +

+ = Φ + + Φ + Γ∏ ∏
#

1 1

2 1

( )

              ( ) ( 1) ( ) ( ) ( 1)

              ( 1) ( 1) ( 2) ( ),

e

h h

e
j j

e

u k d

k j k k j k u k d

k h k h k h u k d h

− −

= =

−

⎡ ⎤
⎢ ⎥+ Φ + Γ + + Φ + Γ − +
⎢ ⎥⎣ ⎦
⎡ ⎤+ Γ + − + Φ + − Γ + − − +⎣ ⎦

∏ ∏
"

                 

 (30) 
 
Now it is possible to recast the optimization prob-

lem in the usual quadratic programming form. Hence, 
we introduce the following vectors: 

 
( 1)
( 2)

( )

( )

e k
e k

E k

e k h

+⎡ ⎤
⎢ ⎥+⎢ ⎥
⎢ ⎥
⎢ ⎥

+⎣ ⎦

�
#

, 

( )
( 1)

( )

( )

e

e
e

e

u k d
u k d

U k

u k d h

−⎡ ⎤
⎢ ⎥− +⎢ ⎥
⎢ ⎥
⎢ ⎥− +⎣ ⎦

�
#

   (31) 

 
where ( ) n hE k ⋅∈\  and ( 1)( ) m h

eU k ⋅ +∈\ .  
The predictive error state can be rewritten in the 

form 
 

( ) ( ) ( ) ( ) ( )eE k F k e k G k U k= +          (32) 
 

where 

1

0

( )
( 1) ( )

( )

( )
h

j

k
k A k

F k

k j
−

=

Φ⎡ ⎤
⎢ ⎥Φ +⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥

Φ +⎢ ⎥
⎢ ⎥⎣ ⎦
∏

#                (33) 

 
and  
 

[ ]1 2 3 1( ) ( ) ( ) ( ) ( )hG k G k G k G k G k+= … , 
( 1)( ) n h m hG k ⋅ ⋅ +∈ ×\ \                  (34) 

1

( )
( 1) ( )

( )

( ,1) ( )

k
k k

G k

k k

Γ⎡ ⎤
⎢ ⎥Φ + Γ⎢ ⎥=
⎢ ⎥
⎢ ⎥
Λ Γ⎣ ⎦

#
, 

2

( )
( 1) ( ) ( 1)

( )

( ,2) ( 1) ( ,1) ( )

k
k k k

G k

k k k k

⎡ ⎤Γ
⎢ ⎥Φ + Γ + Γ +⎢ ⎥=
⎢ ⎥
⎢ ⎥
Λ Γ + + Λ Γ⎢ ⎥⎣ ⎦

#
, 

  

3

0
( 1)

( )

( ,3) ( 2) ( ,2) ( 1)

k
G k

k k k k

⎡ ⎤
⎢ ⎥Γ +⎢ ⎥=
⎢ ⎥
⎢ ⎥Λ Γ + + Λ Γ +⎣ ⎦

#
, 

1

0

( )
0

( 1) ( , 1) ( 2)

hG k

k h k h k h

+

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥Γ + − + Λ − Γ + −⎣ ⎦

#
, 

1

( , ) ( )
h

j i

k i k j
−

=

⎛ ⎞
⎜ ⎟Λ = Φ +
⎜ ⎟
⎝ ⎠
∏  

 
The objective of the control law is to drive the pre-

dictive robot trajectory as close as possible to the 
future reference trajectory. This implies that the future 
reference signal needs to be known. Let us define the 
reference error-tracking trajectory in state-space as 

 
( ) ( )j

r re k j A e k+ =                 (35) 
 

for 1,2,...,j h= . This means that the future control 
error should decrease according to the reference 
model matrix 1( ,..., ), n n

r n rA diag Aδ δ ∈ ×� \ \ , 
where 1,2,...,0 1nδ< < , is the decreasing parameter 
corresponding to each state [18].  

Defining the robot reference-tracking-error vector 
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( 1)
( 2)

( )

( )

r

r
r

r

e k
e k

E k

e k h

+⎡ ⎤
⎢ ⎥+⎢ ⎥=
⎢ ⎥
⎢ ⎥+⎣ ⎦

#
                    (36) 

 
where ( ) n h

rE k ⋅∈\ . It can be rewritten as follows: 
 

( ) ( )r rE k F e k=                      (37) 
 

where  
 

2
r

r
r

h
r

A

A
F

A

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

#
                         (38) 

 
and n h n

rF ⋅∈ ×\ \ . 
 

4.4 Quadratic programming and control law 

The idea of RHC is to minimize the difference be-
tween the predictive robot tracking-error and the ref-
erence tracking-error in a certain receding horizon 
interval. 

The cost function can be written as follows: 
 

( ( ), ( )) ( ( ) ( )) ( ( )

( )) ( ) ( )

T
e r r

T
e e

V E k U k E k E k Q E k

E k U k RU k

= −

− +
  (39) 

 
where { ,... }Q diag Q Q� , n h n hQ ⋅ ⋅∈ ×\ \ . And 

{ ,... }R diag R R� , ( 1) ( 1)m h m hR ⋅ + ⋅ +∈ ×\ \ . 
Putting Eq. (32) and Eq. (36) into the above equa-

tion 
 

1( ( )) ( ) ( ) ( )
2

T
e e e eV U k V U k H U k f U k= + ⋅ ⋅ + ⋅  

 (40) 
 

where  
 

( ) [ ( )] [ ( )] ( )T T
r rV e k F F k Q F F k e k= − −  

2( ( ) ( ) )TH G k QG k R= +  
2[ ( ) ( ( )) ( )]T T

rf G k Q F F k e k= − −             (41) 

 
Eq. (40) becomes a standard form of the QP prob-

lem [25]. The matrix H  is a Hessian matrix that is 
always positive definite. It describes the quadratic 

part of the cost function and the vector f  describes 
the linear part. V  is independent of ( )eU k  and has 
no influence in the determination of the control law.   

The control consequence can be obtained from the 
above equation as follows: 

 
( ) min( ( ( )))OPT

e eU k arc V U k=           (42) 
 
Different from the non-time-delay case, the first 

two steps, ( )u k d− and ( 1)u k d− +  of the OPT
eU , 

are applied to the Eq. (26). (shown in Fig. 4) 
At the next time point 1k + , the future error-

tracking model is  
 

(( 1) 1) ( 1) (( 1) )
(( 1) 1)

e

e

e k e k u k d
u k d

+ + = Φ + + Γ + −

+ Γ + − +
  (43) 

 
Here, we note that ( 1)eu k d− +  has already been 
obtained and the input in one interval is invariable. 
Therefore, predictive tracking-error vector will 
change to the form  

 
( 1) ( 1) ( 1) ( 1) ( 1)

( 1) ( 1)
e

e

E k F k e k G k U k

G k u k d

+ = + + + + +

+ + − +
  (44) 

 
where 
 

( 2)
( 3)

( 1)

( 1 )

e k
e k

E k

e k h

+⎡ ⎤
⎢ ⎥+⎢ ⎥+
⎢ ⎥
⎢ ⎥+ +⎣ ⎦

�
#

           (45) 

1

0

( 1)
( 2) ( 1)

( )

( 1 )
h

j

k
k k

F k

k j
−

=

Φ +⎡ ⎤
⎢ ⎥Φ + Φ +⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥

Φ + +⎢ ⎥
⎢ ⎥⎣ ⎦
∏

# , 

 
 

skT skT γ+ s skT T+

( )u k d− ( 1)u k d− +

( )
( 1)

( )

( )

e

e
e

e

u k d
u k d

U k

u k d h

−⎡ ⎤
⎢ ⎥− +⎢ ⎥
⎢ ⎥
⎢ ⎥

− +⎣ ⎦

�
#

  
Fig. 4. Scheme of input with time-delay at current point. 
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( 2)
( 3)

( 1)

( 1)

e

e
e

e

u k d
u k d

U k

u k d h

− +⎡ ⎤
⎢ ⎥− +⎢ ⎥+
⎢ ⎥
⎢ ⎥− + +⎣ ⎦

�
#

          (46) 

 
Now, note that ( ) m h

eU k ⋅∈\ , because ( 1)eu k d− +  
has been already known. 
From (34), we get 
 

1( 1) ( 1)G k G k+ = +  

[ ]2 3 1( 1) ( 1) ( 1) ( 1)hG k G k G k G k++ = + + +…                         

 (47) 
 
The standard form of QP becomes 
 

1( ( 1)) ( 1) ( 1) ( 1)
2

T
e e e eV U k V U k H U k f U k+ = + + ⋅ ⋅ + + ⋅ +                       

 (48) 
 

where 
 

( 1) [ ( 1)] [ ( 1)] ( 1)

      2[ ( 1) ( 1)] [ ( 1)] ( 1)

      [ ( 1) ( 1)] [ ( 1) ( 1)]

T T
r r

T
e r

T
e e

V e k F F k Q F F k e k

G k u k d Q F F k e k

G k u k d Q G k u k d

= + − + − + +

− + − + − + +

− + − + + − +

 

2( ( 1) ( 1) )TH G k QG k R= + + +  
2[ ( 1) ( ( )) ( 1)

( 1) ( 1) ( 1)]

T
r

T T
e

f G k Q F F k e k

G k QG k u k d

= − + − +

+ + + − +
     (49) 

 
The control sequence is  
 

( 1) min( ( ( 1))OPT
e eU k arc V U k+ = +          (50) 

 
Then, the known input ( 1)eu k d− +  and the first 

step ( 2)eu k d− +  of ( 1)OPT
eU k +  are applied to 

(44), as illustrated in Fig. 5. 
 
 
 

skT skT γ+ s skT T+

( )u k d− ( 1)u k d− +
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( 1)

( )
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e

e
e

e

u k d
u k d
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u k d h
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⎢ ⎥
⎢ ⎥− +⎣ ⎦

�
#

( 2)u k d− +

2s skT T+s skT T γ+ +

( 2)
( 3)

( 1)

( 1)

e

e
e

e

u k d
u k d
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u k d h

− +⎡ ⎤
⎢ ⎥− +⎢ ⎥+
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− + +⎣ ⎦

�
#

   
Fig. 5. Scheme of input with time-delay at next point.  

 
5. Computer simulations and results 

5.1 The complement of the constraints 

During the control of a wheeled mobile robot, the 
bounded velocity and acceleration constraints are 
considered. The robot’s tangential velocity υ  and 
angular velocity ω  are restricted as  

 
max max max

max max max

,
, 2 /

r
r L

υ υ υ ω
ω ω ω ω
< =
< =

�
�

               (51) 

 
where maxω�  is the maximum angular velocity of 
each wheel, r  is the radius of the wheel and L  is 
the wheelbase of two driving wheels. A saturation of 
the command velocities that preserve the current cur-

vature ωκ
υ

=  is performed as (see [26]) 

 
max maxmax( / , / ,1)σ υ υ ω ω=              (52) 

 
where the actual command velocities cυ  and cω  
stand for 
 

max max

max max

( ) , / ,      if /

/ , ( ) ,     if /
, ,                           if 1

c c

c c

c c

sign

sign

υ υ υ ω ω σ σ υ υ
υ υ σ ω ω ω σ ω ω
υ υ ω ω σ

= = =

= = =
= = =

  

 (53) 
 
In the simulations, the maximum allowed tangen-

tial velocity and angular velocity were set as follows: 
 

max max0.5 / , 5 /m s rad sυ ω= =          (54) 

 
5.2 The implementation of error-tracking control  

The parameters are selected as follows: 
 

5m kg= , 20.05I kg m= ⋅ , 0.2L m= , 0.03r m= , 
0.1sT s= , 4h = , 0.56 D s= , 0.06 sγ =  

0.65 0 0
0 0.65 0
0 0 0.65

rA
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

，
0.001 0

0 0.001
R ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

,  

4 0 0
0 40 0
0 0 0.1

Q
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

.                     

 
The ratio of the diagonal elements in Q  deter-
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mines the sensitivity of the resulting controller to a 
certain error. A higher value of the diagonal element 
increases the sensitivity to the corresponding error. In 
the present case the control for the error in the lateral 
direction of driving has the highest weight, while the 
control for the orientation error has the highest sensi-
tivity. Similarly, the diagonal elements in R  define 
the energy of the input-velocity signals; the lowest 
value of the elements results in more energy-
consuming control.  

 
5.3 The eight-shaped trajectory tracking  

The eight-shaped trajectory is defined as follows: 
 

4( ) 0.8sin( )
30

2( ) sin( )
30

r

r

x t t

y t t

π

π

=

=
 

 
Firstly, we considered a nonlinear optimal control 

method. Applying the Euler’s approximation to (2), 
we obtain the following discrete-time model for the 
robot motion: 

 
cos ( ) 0

( 1) ( ) sin ( ) 0 ( ),
0 1

( 1) ( )
( )

( 1) ( 1) , ( ) ( ) , ( )
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( 1) ( )

s

k
q k q k T k u k

x k x k
k

q k y k q k y k u k
k

k k

θ
θ

υ
ω

θ θ

⎡ ⎤
⎢ ⎥+ = + ⎢ ⎥
⎢ ⎥⎣ ⎦

+⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥+ = + = = ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦

 

 
The tracking control policy is derived from mini-

mizing a cost function, which penalizes the predictive 
position error and control signals: 

 
[ ] [ ]{ }1 ( 1) ( 1) ( 1) ( 1) ( ) ( )

2
T T

r rJ q k q k Q q k q k u k Ru k= + − + + − + +  

 
The start pose is chosen as [ 0.4,0.1,0]T− . The mo-

bile robot trajectory tracking results, obtained by such 
nonlinear optimal approach, are shown in Fig. 6. 
Meanwhile, the tracking performance by the time-free 
RHC is obtained in Fig. 7(a). Although the mobile 
robot’s convergence is fast to the reference trajectory 
in both cases, it is obvious that the RHC performs 
better than the former method.  

Then, the time-delay tracking performance of the 
robot with RH controller is shown in Fig. 8(a). We 

can see that the time-delay case is almost as good as 
the time-free one. The delay control signals are illus-
trated in Fig. 8(b) corresponding to Fig. 7(b). Com-
pared to the error states in Fig. 7(c), the time-delay 
case Fig. 8(c) is a little worse, where the fluctuations 
are mostly present in the orientation datum. However, 
the errors converge to zero approximately quickly and 
the tiny fluctuations are in the accepted bound. Fi-
nally, the total torques acting on two driving wheels 
are shown in Fig. 8(d). 

The second trajectory in the test is a circle defined 
as follows: 

 
21.5cos( )
30

21.5sin( )
30

r

r

tx

ty

π

π

=

=
 

 
The initial pose is selected for the tests: 

[1.6, 0.5,1/ 6 ]Tπ− . The time-free and time-delay re-
sults by RHC are shown as follows: 

Fig. 10(a) indicates that delay tracking perform-
ance is just worse than Fig. 9(a) during the beginning 
response. Fig. 10(b) shows that within the delay time 
district at the beginning, the tangential velocity and 
angular velocity are zero. And after the dead time, the 
input is applied to the tracking system. The error 
states are close to zero perfectly after 5 s  in Fig. 
10(c) and the driving torques are obtained in Fig. 
10(d).  

From the simulation results, we can see that the RH 
controller gives good control results, which is to be 
expected because of the more complex control struc-
ture, and taking into account future values of the ref-
erence within a certain predictive horizon period.  

 
 

 
Fig. 6. Time-free trajectory tracking with the nonlinear opti-
mal controller: robot path and reference path. 
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(a) Time-free trajectory tracking with the RH controller:  (b) Time-free trajectory tracking with the RH controller:  
      robot path reference path.        and tangential velocity and angular velocity. 
 

  
(c) Time-free trajectory tracking with the RH controller: errors of three system states. 

 
Fig. 7. 

 

     
(a) Time-delay trajectory tracking with the RH controller: robot   (b) Time-delay trajectory tracking with the RH controller:  
      path and reference path.       tangential velocity and angular velocity 
 

     
(c) Time-delay trajectory tracking with the RH controller: errors  (d) Time-delay trajectory tracking with the RH controller:  
      of three system states.        torques on right and left driving wheels. 
 

Fig. 8. 
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(a) Time-free trajectory tracking with the RH controller:  (b) Time-free trajectory tracking with the RH controller: 
      robot path and reference path.       tangential velocity and angular velocity. 

 

  
(c) Time-free trajectory tracking with the RH controller: errors of three system states. 

 
Fig. 9. 

 

     
(a) Time-delay trajectory tracking with the RH controller:  (b) Time-delay trajectory tracking with the RH controller:  
      robot path and reference path.        tangential velocity and angular velocity. 
 

             
 
(c) Time-delay trajectory tracking with the RH controller:    (d) Time-delay trajectory tracking with the RH controller: 
     errors of three system states.               torques on right and left wheels 

 
Fig. 10. 
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6. Conclusions 

The receding horizon (RH) controller for time-
delay error-tracking control of differentially steered 
wheeled mobile robots is presented in this paper. The 
control policy is derived from the optimization of the 
quadratic cost function, which penalizes the tracking 
error and control variables in each sampling time. 
And the minimizing problem is solved by using the 
QP method, taking the current error state as the initial 
value and including the constraints. Here, the track-
ing-error kinemics model is first linearized at the 
equilibrium point. And then, it is transferred to an 
exact discrete model with delay. The proposed con-
troller also includes velocity and acceleration con-
straints to prevent the mobile robot from slipping.   

The simulation results demonstrate the perform-
ance of the receding horizon error-tracking control of 
wheeled mobile robots. Compared to the time-free 
cases, they show that even with the time-delay, the 
robot converges to the trajectory accurately and fast. 
The RHC method is confirmed to be a very feasible 
one to control the wheeled robots. 
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Appendix 

Appendix. A: 

The time derivative of Eq. (12) is calculated as fol-
lows: 
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Appendix. B: 

From Eq. (15), if  
 

( , ) 0ee f e u= =� � �  
 

when 
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( e� , eu� ) is the equilibrium point of Eq. (15).  

Using Taylor’s series, we obtain 
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